The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint

نویسندگان

  • Shuai Guo
  • Chunhui Niu
  • Liang Liang
  • Ke Chai
  • Yaqing Jia
  • Fangyin Zhao
  • Ya Li
  • Bingsuo Zou
  • Ruibin Liu
چکیده

Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Dimensional Patterning using Ultraviolet Nanoimprint Lithography

Although an extensive number of publications have been reported on nanoimprint lithography (NIL) techniques, the ability of NIL for three-dimensional (3-D) patterning has not been fully addressed in terms of the mold fabrication and imprint processes. Developing technologies for patterning 3-D and multilevel features are important because they eliminate multiple steps and complex interlevel ali...

متن کامل

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

Fabrication of 2-D photonic crystals using azo polymers

In this paper, we have reported the fabrication of two-dimensional photonic crystals, using a direct writing method in azo polymers. Periodic structures have been fabricated using the interference patterns of two coherent laser beams. The frequency response of the initial one-dimensional structure shows an attenuation of 19.3dB at 1554nm. The twodimensional structure shows 8.3dB and 11.3dB of a...

متن کامل

Label-Free Optical Detection of Fibrinogen in Visible Region Using Nanoimprint Lithography-Based Two-Dimensional Photonic Crystal

For the future medical diagnostics, high-sensitive, rapid, and cost effective biosensors to detect the biomarkers have been desired. In this study, the polymer-based two-dimensional photonic crystal (2DPC) was fabricated using nanoimprint lithography (NIL) for biosensing application. In addition, for biosensing application, label-free detection of fibrinogen which is a biomarker to diagnose the...

متن کامل

Nanoimprint Lithography

The Nanoimprint lithography (NIL) is a novel method of fabricating micro/nanometer scale patterns with low cost, high throughput and high resolution (Chou et al., 1996). Unlike traditionally optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016